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Q: What is machine learning?

OLDER INFORMAL DEFINITION

The field of study that gives
computers the ability to learn
without being explicitly
programmed

- Arthur Samuel

Example:

Computer explicitly programmed
to recognize a bear

p— (@)
O@ while plugged_in:
- pixel = image[360][368]

if pixel["color"] === "#8B4513"
return "brown bear"

else
return "a different color bear"




Q: What is machine learning?

NEWER MORE MODERN DEFINITION

A computer program is said to learn
from experience E with respect to some
class of tasks T and performance P

IF
its performance at tasks T as measure by
P improves with experience E

- Tom Mitchell
Example: In plain English:
Computer program Iearning More experience

leads to higher
performance at tasks

(g @ ’%\ way +o Ieavﬂj

£60M "eRperience
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Example:
Computer Program playing checkers

r. .
R
E (experience): playing many games of checkers (or data of games)

T (tasks) : task of playing checkers
p (performance): probability of winning

Example:
Computer Program driving vehicles

E (experience): driving many roads (real and simulated)
T (tasks) : task of driving safely from A to B
p (performance): number of accidents




This course covers supervised and unsupervised learning

Supervised learning ﬁ%@é@

We are given data with inputs and RAW DATA
correct outputs. For example:

x1 x2 y
< Size |Bedrooms| Price

. . 1000 1 $100k
housing data (inputs) 1750 ‘ 3 <300k
& house prices (outputs) 1500 2 $700k

This data is used to create a IV I’\ 1\
statistical model (or just "model") These are output
Npurs

used to predict new data

0) -rmlia(""”“"s) 2 wodel

new) peedicred
G) medel (\"WS‘“& dafd /=) Woke price

Say we wanted to predict
the price for size=8000, bedrooms = 6

‘MopEL | LS2M

\ %4 ¥ Wh £ 8000 % 200

Yo ¥We: b x §0000
= jAc0 000




two main flavors &0 of

supervised learning

/

linear

regression

predict results in a continuous space

pfedioh'an

v

D

Example 1

&%)

given: house data

predicts: house price

Example 2

given: photo of a person @

predicts: age of person

Wouse
\x‘\ce
$IM

4500k

Jrook.

Age:‘l?-l%'l

house data

\

classification

predicts results in a discrete space

prediction
¢

Vo
NES NO

Example 1
given: email data
predicts: spam or not spam

Example 2
given: photo of tumor
predicts: malignant or benign

dierete
deagion
toouv\davv)




In an episode of HBO's Silicon Valley,
the characters create an app called
"Not Hot Dog" that detects whether

an image is or isnt a hotdog.

The software engineers behind the

show also created this app in real

life using a total of 150,000 images

to train their model to identify all
types of hot dogs

necrete classes
"Claselfication”

Y

Tmage Pixels  Dutpyt
HoT Dog

WOT D06,

WOT Dog

m T WOT DD

oo NOT HOT Dog,

This is a great example
of logistic regression!
Inputs are image pixels
Output are the two
discrete classes:

1. Hot dog

2. Not hot dog

a0



two main flavors Q of

Unsupervised
Learning

outputs are not |n
our provided data

/N

clustering not clustering
"find clusters!” example: Cocktail Party Problem
e (((‘ =3 ) )
+F + +* —
|+ T+
-+

- (©
I *X;A;/\ 20\% (t (@
A @gq\_ \\gk\

Given data, we use algorithms
that find groupings or “clusters”
to the data

Crog | This computer can listen
id | location | lifespan | role

to sounds and identify
individual voices and music
from a mesh of sounds

Grovp2



Supervised Learning 29: B - Sl

In supervised learning, our

goal is to learn a function
given a set of data

W(X) =)

Hypothesis function (h)

Tmmmg

\,Qaminq
Agprivm

given input (x) v

predicts output (y)

training set
& feature set

& training data

& training dataset
& feature set

& feature data

& features

= h[>Y

Lo shides

what is "training set"?

data can be used for training our model...

& data we decide to use for training is "training data"
& this set of data, our "dataset" can be referred to as
our "training set"

& each individual data attribute of the data can be
referred to as a "feature" (humber of bedrooms and sq.
feet are features of the data)

& so sometimes the training dataset is also the feature

dataset, feature data or simply our "features"
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Our data is our training set

. Tmlmnﬂ Q
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Q: What makes up our data?

A: In supervised learning, our data has:
1. inputs (our "features")
2. outputs (our" labels")

For our housing example

o =
o ‘,{
inputs (features): / output (labels):
x1 = square feet ﬁ 349 | y = house price

x2 = bedrooms

‘wowts output
These outputs of price

1 x2 are in a continuous

There could be as x y
. Size | Bedrooms Price P space so you can tell
many variables/ his data is fit
1000 1 $100k this data is fit tor

features that your 1750 3 $800k linear regression.
budget and 00 "
computing power 15 X $7?0k

allows! Z : :
Classification (logistic regression)

(x“’,y‘”) m = number of would require "classes" as output
This pair represents training examples ie. (can afford / cannot afford)
a single training
example where the
represents the mdex

NOTE: all inputs can be converted to / .\ ..) O\o10110
numeric, even images! LOI\DCO
\O|\ OD.--



HNPOTHSIS FUNCTION (W) mmmssiniinmnas

Q: what does the hypothesis function and look like?

A: All data inputs are eventually converted to 'Tm,,i,‘g
numbers and h is a function of these numbers. Set

v
\\(\) )y \,Quminq
Rgptinm
v we
ovkput *>lhbvy @,
= \I from slides
Example h with one input (x) variable 00:0 & =| Q:which 1 e
W)= 0+ | (%) vest W(X)?
\/«6:90+9|X 90\./- ~L 80210 &:=¥
toT w{ v W= 049560
h functions have a bias value (6) 30
we want to solve for 6 & 6, 20 1

so that h(x) "fits" well with
our training set

10 20 35 4p 6 X

remember y=mx+b from high school?

Remember, our data can have one, two, three or even
hundreds or thousands of inputs!

1> he=8ot X 162X
25 Wh=00+0 X +62 +V2%g

\00 e =00 +Bik +Guxg + B2 «BuXy + O5Xs

O, o

o
L}
Q this many dimensions becomes hard to graph 2: 92
so this course usually visualizes 2 or 3 features 6- '



“nie noticed b, he, he(X) Leing used"
Thege all refer 1D the hypoThesis function

ho clarifies that h is parameterined by +hetn
he(X) clarifies, that it 1akes mpwt (0

Note: hypothesis functions dont need to be simple functions

Depending on our domain knowledge about the data and the
problem, we can create complex hypothesis functions

Example: two inputs with a special relationship

ez Go+ 61X, +02% %2 + Bz X2

Example: two inputs and higher order relationships

Koz B0+B Y +62¢+ 95 %>

"whichever function we use will depend
on our knowledge about the data"

oA L DATAZ DATAS
o t
+ ++++ ~ o
+ ﬁifﬁ * + *+ *
+F +F + ++

PROTIP: we can try different functions
to see which one fits the best
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Q: How do we evaluate our hypothesis function?
Q: First, why should we evaluate h?

A: We are using h for predictions and we should
know how good or bad those predictions are?
These O are
How well do I costly...
data? 020 &yzl
ﬁﬂe oo Q hg)'»t:)o—el(x)
o A ﬁ J
wo + X
%0 P d
p-4
20 1 X Y
10 * KK

M T v \J ;
10 20 3 Yo 5o X

“Training

\

\Warning we

%
v

e el

foomn slides

whidh 6 i
least cost?

3

d

A: We evaluate a hypothesis function with a “cost function”.
Remember, in supervised learning our data includes the
correct outputs we can use hypothesis funciton outputs.
There are different cost functions but the most common

one is “Average Squared Difference”*

Lnear Reqresgion Cost Funckiony
Duv qood

15 10 Bind .4 Y
fefa (8 3@'M§UMY)
o leadS 0 Lon b e
o5 (3@ pre v TS

Note: this function amplifies larger errors since an error of 1 is 142=1 while a diff of 5 is 542=25!



Agen 57 (qradient Descewt /:g-v;s:_

Q: what is gradient descent (GD)?

A: GD is an algorithm that allows us to

v
- we
. \Rarmin
find the O (theta) values that lead to Qﬁ?}e
¥

the lowest J(B) (cost). Wy Y
The % funchion Mok Lol reqresslons wilk
ok linear regression - Awnds R convex and
could 100K ik s A0tonT awt \otak optima
:S(e) \\‘l ’(\MS:
3® L\)
A ‘
( B 0
Mminmum oSt
. o ©
LQ’TS W?Q/ e dWiVO'\'NQ /8 Remember calculus?
The derivate gives us
Q: How? are tangent line

A: The derivative of the cost function
informs us of the slope of the
tangent line. with this we know red: tangent line
which direction to "descend". green: feaming rote
The "learning rate”

determines the step size.
I®

Z1 —
/ ©

mwmum ST




Gradient Descent Algorithm

(one input example)

This is the condensed version with two thetas: one input theta and one bias theta

learning partial
rate 6 derivative

repeat i ‘V ?
0):=6) - 79) 3(ee,6))

z
f V‘émﬁwmt\j for ald )

Note: technically when there are more parameters

we are using the partial derivative

This is the expanded partial derivative from calculus

%9_ 3.(93 - }\vn' izﬂ @e (x™)- ,(\\) X(i)

N} Note: this a general version of the partial derivative

The final version of the algo has this expanded partial
derivative and since x? is always 1, we often see it
disappear in the formula

Qradiewk DRscemA AlgovrHimA - ove ingut

repeat until convergence &
m :
Bo 1= B0 - o 2, (ho(XM)-y®)

E Bi:i=0-Am %‘(he (™) —\}m) &



week 2
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ARAPARS Multiple variables RIIRIRAIAR

Our data may contain

/ N\

® Single feature  or @ wultigle input features

here: size here: size, #of bedrooms, #floors, age in years
X Y X x2 X3 x4 Y
size price size |bedroom| floors age price
1000 | $100K 1000 1 1 60 $100K
2000 | $200k ] 2000 2 1 15 $200k
3000 | $300K %17 3000 2 48 | $300K
, % &)
Single feature ! waliiple nput fatures

size?
2
& bedrooms?

< floors?

S age?

7933 Notation
n = number of features
you want me to .
. . Q] . .
predict price X" = features of ith training example
n this sing| )]
on this single x(.| = value of feature j in ith training example
J

feature???




Hvpothesis Function
G YP o

Multi-variate + Vectorized

Single featurt
\'\\’M\S functiov)

\\v(ﬂ’%*em

Note: we have more 0 variables than X
because of the 6, bias value

Multiple Variable hypothesis function

Wo(X) = Bo + X1 +Daxa + 65X3 + Dyxy “@ZM@

of qanevally

e ) = Bo+ BiXy ... BuXwn

why is Xo =17

&)L

In order to create a vectorized representation of hO(x)
we can assume an x value (which is always 1) Xo is just a placeholder
Now our vectors both have length n + 1 and 1 multiplied

¥

5o ]
- 9‘ -
b= 9.2. L

D -

Multiplying these two vectors
hB(x) = 8 x, + 8 xx
can be represented as

Multiple feature

Y

~Ro ]
X
K2

i

hypothesis function

W)= BT

by any value
is that same value

In order to multiply two
column vectors we
need to transpose a vector

3 Transpose
=\ "
¥ N
AN
for example
-Bo ,' T

T D1

b- 0. =[3o B 02 Ou]

L By A



‘/\[\l\/\‘\G radient Descent J{/\/\/\/

Gradient Descent works similar going from
one feature to multiple features

In essence,

Qradiewk DRScemA Algovrthna - ove input
for a single feature,

repeat until convergence §
perform a simultaneously Bo:= B0 - at #a 2 (wo(<™)-y®)
update for 0 in order to B =8, - ;—v\_‘%lChe(x“’)-vm)X“’
minimize cost. E
Here, we only looked

at 6 and 6,

) S
For multiple features, we avadienk Descenk :\\qonﬂnw\ wulti gt
are expanding tO 92, 63, repeat unUIconvergence

B0 = 8-t 2, (e (<M)=y)

61 = 0, -4 w3 (ho (™) -\)m) X
=\

By = 8 - T %(he (X(ﬂ) _\)m) x(i)
=l

all the way up to 6n

Bz On-d _.M%'(he(xm)_’m)xw

we can more generally
represent 0, ... n as j and
create this concise function more QQVIGV‘GIH

m e
0y=0) -o¥; El(he(x“ )-y®)x%;®



Hbrrer R CakiN SDW") e
Gradiowk Descows i prachice |
What: make sure our features are on a similar scale
Why: our goal is to make gradient descent run much faster

as 0 will "descend" quickly on smaller ranges
and slowly on long ranges

&
Mn’e LoNOER RANGE
Cweters

ﬁ-mrs
Say you have two features Feature scaling: w
x, = size (0-2000 feet) divides input values \%;?
x, = #of bedrooms (1-5) by its range

= 92wy B of bedroomy
‘ 2900 - 2

The difference in scale creates

a skewed cost curve graph Which changes our cost curve to:

gradient
& descent
may take

super
long 7’

Q>
_0_7\



Two tricks are:

O feature scaling (D mean normalization

@ Feature scaling involves dividing our  Note: every researcher has their
. . own rule of thumb for this

feature value by its range in an range. Ng suggests -3 <= x <=3
attempt to shrink its range to and -1/3 <= x 1/3 are also

appropriate ranges

-le X ¢l

® Mean normalization is an additional option
that replaces the feature value with
feature value minus the mean so
the new mean is roughly O

How to Mean Normalize
In the above example if: ,
new (mean normalized) —
Average size x = 1000 feature value range

original feature value — mean

Average bedrooms x, = 2

X'e K-p
S

g = S'2e-100° Y2 = 8 Vbedvooms =2
2°00 = S




Video: Gradient Descent in Practice Il

Debugging: How do you know gradient descent
is working correctly?

Sometimes GD never converges
Sometimes GD has a slow convergence

Method I: plot of the cost function J(B) to its number of iterations

\-b Use checkpoints at 100, 200, 300, 400
iterations to see if gradient descent is
working properly.

J(B) should decrease with every iteration
Jo
. Solution:
what if our graph Use a smaller
looked like this? |earning rate
——t—t alpha
109 1,00' 300 400
# wevahons

This means each iteration is making
our J(8) cost larger. This could
mean that in our convex curve...

I®

the learning rate alpha is causing
[} our us to overshoot the minimum
and actually increasing J(8)




Jo

what if our graph /\M/\) Solution:
looked like this?

Use a smaller
| [ 1 1

———t— learning rate
109 7.00. 300 oo
# tvanoms alpha

Learning Rate ()

el LARGE CA

= for sufficiently small Q, J(B)
should decrease on every

- if alpha is too large, J(B) may
iteration

not decrease on every iteration

AND it may never converge
= BUT if A is too small,

gradient descent can be
slow to converge

To choose an alpha try
different values:

..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...
\/7 \;’ A1 \./"

o~



“TonW"a

FEATURED

Depending on your domain knowledge %
about the problem, sometimes defining &

new features may lead to a better model IN
Given two features

x, = frontage
x, = depth

Based on your real estate

knowledge you know that

— | e . .

ouT

"area" is a better predictor frontage
of price area = X
depth

Now we can use a better
predicting single feature hB(x)
he (f\ s eo + B.\/\l



POLYNOMIAL

REQRESSION

we have been working with

straight lines so far Vs 7~
Wo =80 +Bi% + Bake £+
7 * +*

no matter what theta is
this will represent a

straight fitting line -
through the data

Depending on the data we may
want to use a polynomial function

o +O Rk + 92.)(1
on,
Do +b x+ezx7‘+93x3

X
VARV, ‘S

o square roo+!

Bo + B (S12¢) + ezl $i2e

Lor scale,i€:

Note that feature scaling .
size = |-),000

becomes very important
now since these ranges sizet = 1-1,000,000

i |
get exponentially large! b = |-1,000,000,000



Parting words:

W

This may be bewildering!
Which features do | use?
which equation for the
hypothesis function?

Later in the course we

talk about algorithms

that will choose features.

For now just know that you
can choose different features
and equations when your

data calls for it
"



Lecture: Normal Equation

we have been using gradient descent
so far, alternatively we can use the
"normal equation” to solve for
theta analytically.

Note: this lecture does not prove why
the normal eq works, just how to use it
and when to use it

Ao Normal Equation CXT)(T‘ XT_\j

where X = inputs
Y = outputs
m = # training examples
n = # features

10:51 AM Sat Dec 7

X Normal Equation

Examples: m =4.

Size (feet2) | Number of | Number of | Age of home Price ($1000)
\L bedrooms floors (years)
= Zo Ty L) r3 T4 Yy
1 2104 5 1 45 460
1 1416 3 2 40 232
1 1534 3 2 ’ 30 315 1
1 852 2 1 36 178
1 2104 5 1 45 460
X — |:l 1416 3 2 4()\ . |:'23‘2
2701 1534 3 2 30 Y= 1315
1 82 2 1 36 178
m % Cak) M»&m(u& Jekor
0=(XTX)1XTy 5

where C)(TXB-‘ is the inverse of XX



NORMAL EQUATION IN OCTAVE:

piny (X' ¥ K) ¥ X' #*y

When should we use either?

Gradient Normal
Descent Equation
. Works well even - No need to choose
Advantage when n is large learning rate a

- No need to iterate

- Need to compute
(XTX)™

- Need to choose
Disadvantage learning rate a

= Neeek mer; - Slow if nis

Iterations very Iarge




Normal Equation and Non-invertibility

Q: What if XTX is non-invertible?

A: This should happen very rarely...
But this may be possible because

(D Redundant features

Example: you have one feature size (in feet)
and another feature size (in meters)
Solution: delete one of these features

@ Too many features
solution: delete features
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Logistic Regression (Classification)

Classification (binary) Examples:

Email: spam, not spam

Online transaction, fraud?: Yes, no
Tumor: malignant, benign

Photo: hot dog, not hot dog

Note:{1,0} is binary and can be
interpreted as {Yes, No},
{SPAM, NOT SPAM}, {X, O}
{HOT DOG, NOT HOT DOG}

More concisely, O or 1
Given features X, ho (x) = {1, 0}

These are incorrectly identified
@ as 0 (benign) with this best
fit line from linear regression

Looking at a line through data

Here we use the best fit line \/
from linear regression: malgnst

we may be tempted to interpret
hB(x) >0.5=1and hB(x) <0.5=0 ,g

1

@ This line will
predict values
much larger

than 1
- TUWoY
. Si2e
benign malignant
maliqnawt |7
we want to go from l XX X X AL
best fit to best split os Lo
D Lok
Veuqn T‘".V\Qr
" Si2e




Intuition:

This was our However for logistic regression
linear regression hB(x) should only return {0,1}
hypothesis function so we use a "sigmoid" function (g)
otherwise known as a "logistic" function
h%(ﬂ: BT to take 8Tx and fit it to an "S" curve

PGP TP ey

L)

| 3(2)
0y
“a= >

L
1+e®

Ao o . adl

oA

\4

T || sigmoid
6* K function

Number
- between
Dand 1l

Logistic Regression Hypothe

ho(x)= 9(6T%)

werg '
9@ e

sis Function

one liner:

l
Wo (0= | -0



:-‘@,_ In logistic regression we can think of hB(x)
" as the probability thaty = 1
so if hB(x) = 0.7 then there is a
probability of 70% that y=|

Notation Check

POY=1]%70)
7 /r ’& \
probability ) parameterized

output gIVeN X by theta
"y equals 1"

More about probability algebra
lidg

There is a 100% probability @(DO> + @(DD NOT) =|

thaty=1ory=0 E’?@PAM) . E’?@m SPA@ -\

Therefore:
POyely « plyzoy=]  PLS) Pl )
Pler s )=l -P(&)

Note: once you know
P(y=1) or P(y=0) you
can derive the other through algebral



Decision Ibouvmdavg,

Finding the boundary to best split the data




Q: How does hB(x) represent a decision boundary?

Say we have...

this hypothesis function and this data

Hypothesis Fn.

\w(%) =0+ Q\‘ll + B_ZXL

we need to solve for
O(theta) that creates the

best decision boundary

¥ we learn how to solve
for theta in a later lecture

Imagine we solved

for these theta values:

po=-d
0§z |
02:=1|

0=}
Hypothesis Fn.

ho():= -3 +1(x0) +1(x2)

and Predic\- y=|
it he(X 2D

Data
Xi %2 Y
|1 © [}
05 | (o]
2.5 29 |
-5 | (0]
| % |
2 05 A
0 (o)

g

Charted Data

* A
”( * *
11 A
‘ * A
*
L2 o3 X

Charted Data

| ;/A?; )z|

This is the decision
boundary solved
by finding theta



45588845 \00ISTIC RERRELSION  COBT FUNCTION 5838385588888 584888

Q: Can we reuse the linear regression cost function
as the logistic regression cost function?

A No
B Why not?
First lets look at our linear regression cost function:

Vear ceqreban 3O - ﬁg\ “i(ha(x“))ﬂ/o))z
> \/‘\/‘\)

Since we have a higher order (non-linear)
A hypothesis function

(0= 5% )

IF we plugged it into this function
our cost graph will be non-convex

NON CONVEXK CONVEX
This shape means many local Our goal is to get this pretty
optima; gradient descent will looking convex shape that
struggle to find the best option gradient descent can help with

g/’ \J



R what should the shape of our cost function be?

ify=0
our cost graph for ha(x) 4
could be ya of these shapes |/ /

0 ue(;) |

@ We know that this cost curve
SHAPE needs to be convex.
so gradient descent can
work its magic.

A: The log and -log shapes are great shapes

This is the This is the
log function graph negative log function graph
\ -
o \gﬂ RN
o

‘ SN

-
/

Why are these shapes great?

Why is this function great for modeling our cost curve?

- They are convex \ cost -> infinity
“\Q when h8(x)

- Can have zero cost J \ is incorrect

- We can model cost to cosk

cost =0
‘[ when hB(x)

is correct

approach infinity (helps to highly
penalize wrong predictions) | ve




Logistic Regression Cost Function

S -log( hB(x) ) if y=1
Wk cost(hB(x), y) = i oI Y
-log(1-h6(x)) ify=0
Intuition
if y=0,

we want the correct prediction to “cost” less
than incorrect predictions
sO...

hO(x) = 1 to “cost” less than hB(x) = 0

A TALE OF TWO HYPOTHESIS PREDICTIONS

®

Difeecent
parametevs
\ead +o
dife wonk
prcd\&h()ﬂs

@

ANSWER
we setup “ V(=0 lﬁ
e i B g
10 ma¥e mistakes V

move costly

® N\(f“ o NOCOST

ANSWER

w o
tost=0 ‘\ne(x)-o !

RONG
6oOD b\DOv "

OW NOE2...
MISTALE

cost = oo Wl




In notation he GO
cost=0 € y=1 4 he(GD) =1
but a5 hok)-> © (We() approaches 2ero)
cost—=> Q0 (ot approaches infinty)

appreatnes 2000

Visualizing the cost graph

Logistic Regression Cost Function

-log('hB(x) ) if y=1
cost(hB(x), y) = E Jlog(1-hB(x)) ify=0




Q Converting our cost function to one line for J(6)

»Inf](‘ﬂ"()o) Fy=l

logistic Regression cost Function 109(1= ke ¢ y-D

-log( hB(x) ) if y=1
cost(hB(x), y) = E Jlog(1-hB(x))  ify=0

if y=0 this portion = 0
e
c )

costthB(x), y) = (y) * -log(hB(x)) +  (1-y) * (-log(1 - hB(x))

fearvang e fearvang e
() sy (=) sy

Ay * log(h8(x))) 4+ -((1-y) * (log(1 - h6(x))

11

remember
fransitive property
s extratt  —1(¢+yd = =Y+
- \\V\Q«o ] "“l(y * log( hB(x)) <+ (1-y) * (log(1 - he(x))\)
N

We use this in JO to
measure average cost

56=4 Z, COst(heG), y)

5645 Z, [¥Clbe (<) + 0O lg1-hot™)]



Minimizing Cost J(0)

00.)
Like al ) ters theta (O .
ike always g‘lv'en’parame ers theta (O) S say
we want to minimize cost
wmiv 3—(6) ®
®
6
) wmmimuwl
$ we have a convex shape (function)
and we want to find the min value
Welcome Badk
5 - ‘y
= Gradiant Descoudt

Repeat {
9\-),.: 9;)—0\ a%d 3(9) & until convergence
:

If the gradient step
were a boat...

% 3

—
!

o =512 0F book

-t

the gradient boat leads
us to the minimum cost!



Expanding e\\ 1= e\) -0(9%\.)3'@ to something usable

Think back to

p)
calculus class 03:= 6y A3 J(©)

Note : 9J is parameterized by “j”

and we have the partial derlvative =

The chain rule }‘rom calculus
says 9:) :=0) 0\5’5} 3(0)

can be rewritten as

- o Z (hex®)- y"’)*m

P es)

&Mul&twousl

Q:) = es-ok‘% (\ne(x‘“)-ym) xf.) ( pcakg all Q))

[
If gradient descent ‘\% ‘\%, D‘%
Wejre a group of ‘\ ‘\ \KJ .
gradient step boat... Cﬁ/ 64/ 'Q%/ SIm::Lac;c::)eusly
\

Dy \% D
\r’%? G o



Lecture: Advanced optimization

% gradient descent alternatives

1. conjugate descent AdvaMaﬂeé

2. BFGS - no need to manually pick

3. L-BFGS a learning rate (a) (these

* the details of these algo's will choose a for you)

three are outside the - often faster than

scope of this course gradient descent
Du&MVaM‘O\SGS

- more complex

Recommendation:

Do not write these algos yourself
you can use these algo's without fully
understanding the implementation



S0 maticlasy Classification

multiple clashts
Example dasses  — . —
* indices can start

emald taqqing: wore, friemds | Fuw“l\j 2o y=0 ey
Y:l \l:Z \lz's

weather: sunny c\oud\j ) SNowy

l’ (\ ’_1
Or €53 '~

-\ &
/

Instead of binary classification \ ,.!"!
where we only have two classes 0 K
Z b o0

(true or false, %% or @) ... R

. o q9
In multi-class classification we can q
have many classes (%% , @, ) Y =

& nh

We can solve this by creating
multiple binary classification

problems. ,, ,,
1.9 and NOT %% 2. @/ and NOT @ 3. ' and NOT

944
1
- o

o el

— Y

We now have 3 classifiers and for predictions,
we run all 3 classifiers and pick the highest score



Overfitting & Underfitting

Your model may be improperly fit to the data

) Underfitting:
Your model doesn’t

fit the training data well.

"High bias" because similar Imagine if our
models assume all

data fit a straight line

Bo+ 01y

to your model having strong
preconception of the data

2SI
7 ¥
Y
_\K/ *o KX
‘ p v L
—
@ Overﬁtting Imagine if the model
Your model fits the essentially memorized

all the data points of

training data too well. the training set

It tries too hard to % Dot DX +B2x5F

fit the data and fails O X A o3l+my ..
to generalize to new data *
"high variance" iy O *
AR




OVER fitting

\: What is over fitting?

A: If we have too many features, the learned hypothesis
may fit the training data so well that it fails
to "generalize" to new example inputs

Note: Given this data L % A
we can fit a linear, — +
quadratic, even a %
higher order function
z
Bot BN +02X +
Bo+Dix Bor0i X468, ©3%+by Rt
I. /5(
inear
regression
7 R
1 1 (P
underfit ) . overfit
"high bias" JUST RIGHT "high variance"
v \ )
b O O~ 0 O~ 0
logistic ® OO 7LO 7{70740 ORA0C
regression AL LOC 0O <L O o OO o
* A * L LA




Addressing Overfitting

Its easy to plot data with only a couple features
but we will encounter data with many features

Y., | size of house
Ky | color of house
Kz | # of bedrooms

X100 | cardinal direction of 2nd bedrooms 3rd window

Options

® Reduce number of features

@ manually remove features
© choose a feature selection algo

@ Regularization

B

What is regularization?

The idea behind regularization is that having
smaller values for our 8 parameters creates a
“simpler” hypothesis, smoother functions
and is less prone to overfitting

Suppose we want to penalize and make 6
values really small. We do this in our cost
function by adding an additional term that
magnifies the affect to 6




NORMAL
Je= COST +  REGULARIZATION
FUNCTION TERM

= J=\

(. —
o

This lambda termi (A) © o tis veqularization teym
paramater we can adyist will rrducg e © values

LINEAR REGRESSION
W/REGULARIZATION:

LINEAR REGRESSION 4 REGULARIZATION

LOGISTIC REGRESSION
W/REGULARIZATION:

LOGISTIC REGRESSION + REGULARIZATION



week Y
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AV AV AVAR AV AV AVARN AVAR AVA
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Neural Networks

Intuition

This week we learn about neural networks.

We already have linear regression and logistic regression,
so why do we need another learning algorithm?

There are situations we want to learn complex nonlinear hypothesis.
Consider you have this data.

X A we could add non-linear terms
&
x X 0 O X
o % % 2 2
@) O %7( XXy + Xixkg + Xy + ...
o ©
O ¥
When you have only two features X A
we can afford to add all these terms... X X A o X
but often you have many more than two X K
— . : ©0 o
features and this becomes computationally o X
expensive so we need a better learning O O A
. K *
algorithm

How do we solve this?

If we used logistic regression, we would add non-linear terms that are
complex enough to fit interesting datasets.

Quadratic such as x1*x2 x1*x3 etc...

Or cubic such as x1*x2*x3, x1*x2/2

However, that is a lot of features which leads to
e overfitting,

* computationally expensive

Complex non-linear hypothesis are hard to learn when n is large



_ model reprgsentation Meur Ms '\m M min “‘f«’g&‘?v‘l} . ‘*“’Lﬂfm_/ﬁ%;_fj}‘«%{%i&%L

mM
The neurons that make up our brain have w, g
Dendrites - receivers of input \ 75 \t/

Axons - broadcasters of output M

output’ wirg
a simple model based {
on a single neuron O\> —5 Lol
can be simplified to: 0—
07
oo
mput” wre S

a neural network
is made up of
connected neurons

outputs are
inputs to other modes




WAIT...
Q: Where does the nonlinearity come from?

A: At each node, 87X is the linear combination UNEAR

of theta (weights) and x (inputs). Lomed
We call 87X, “z"
g., :o 2=0"X y
| |
VE %; X= ;(zz; = [6., 819203 |* i;'

*y
The difference is that

we put z through an "activation function” GMOLD
which is a nonlinear function “g” I

o—[a!—o numb er
In this course, g will be the sigmoid function. 3 WWQ(W‘\
I :i:.‘......) 0 aVld

he ()= d (=) Stcjmoio\ Gunction |

|+e®
O |
oO—) ) = YED) so he (’() = l+e-e*x
=7

()
Here “g” is the same sigmoid i .
function from our logistic D; ’
regression lecture ¢ >

\4

*|n fact, without the network,

. - . . Number
this should look similar to I iy !_) sigmoid | | potween
N . 1
logistic regression funcvion 0andl



A neural network is a collection of these neuron calculations.

Terminology

The first layer is called
the input layer

The last layer is

the output layer

All layers in between
are "hidden" layers

a=[i ]
Note: Theta is now stored in a matrix L.

In the single neuron example (like in logistic regression),
output to a single node means theta is a 1D vector.

In the network,, each layer can output to 1+ nodes for the
next layer so theta is a matrix of paramters (or “weights”)

MATRE | (]
% Nutation

(p activation unit of
A\ unitiin layer j

Toput  Viddow iddon  owtput
viye (ayer2 layer3 layev Y

— ha(x) o Mmatrix of weights
e going from layer j
to layer j + |

X inputs from the data



Notation

This is a single

theta value theta from layer 1 to 2
from
layer ( ‘)
. 050
(o} rom
B e /('Q' for the Oth node of the layer (1)

for the 3rd node of the next layer (2)

In matrix 6, each row
will be the theta weights
for a single neuron to multiply

......... o 3

( 0

a, -g(em Xo + Bu.xl + 6.2 x2+6,3 *2)

w (O wW D)
‘ 61 3(87_0 Xo + 62\ X+ 912 X7_+623 ' ED)

0
@ @ st

Notice

That these values determine
what row in the theta matrix

is used to calculate this neuron




Q: What are the dimensions of theta of a single layer?
A: If a network has

k units in layer j and
y units in layer j+1,

0

then ©(j) has dimensions (y * k+1).

o[

Where 1 is added to k to adjust for the bias term

I

Example:

]

layer 1 has 3 units and
layer 2 has 5 units
0™ will have dimensions:

dimensions:

k=3 1

layerj layer
v ¥
O 0\
‘0 ©
o O
| O O

O .

j+1

viert layey

I
</

oOooo

(y*k+1)=(5*4)
A A
units in units in current
next layer layer plus bias unit )
\ayor Mo X
oV N A
O [ L J ([ o ©
O 0; ® e @& o : r\o
o e 5 5 008
bb d b



Model Representation 2

Q: How do we calculate the layers efficiently?

A: Computers are extremely fast at vectorized and
matrix multiplication so we solved with vector math.

"Forward Propagation": Vectorized Implementation

— D) f (D) (O)
T ok a.z=3(9.2 Ko + Q(.)JX\ + 012 X2+0,5 %30

w (O] w O
el af-g( 20 Xo+ B\ X1 + 0,2 X2+0,, 1 EP)
)

w ([O) (D) D)
ﬂ;-:f)(e}o Xo + eu X+ 937_ Xz+e33 ¥2)

@ 6O, 06 o
b= 1(6 2y +Bua,” 6.5 0545

\/QU'OV m O\T.\$ VQd'Of layer to
r layer from
v 2
z for © for x for (2) w)
layer = layer 1 layer = ‘x
A 7 / 2 =6
Z is the linear combination

of theta and X values

vedkof”
\ayev \ayev
Activations ‘ J 4
for - z for (2 _ .2(27
layer 2 - layer oy - 3( )
2

a? is the activation layer of
layer 2 that is input to layer 3



otherwise known as" layer 1"

Say we have input vector x or “activation layer 1

Ouir first goal is to find activation layer 2.
Here we represent these vectors in

shorthand
- — . (@
2 @ 2) Ay
5 to 20 2577 - .
‘ %;(2) O\z
K2 o)) (€Y,
a3
*? |22 |
Solution: P
calculate the / / / \
linear combination /
and take the sigmoid T \\

(
3@ - 6"x B vector

O\(D - 36%&)) e\J LL . 7(\2

etov
J Qo Va“’
VROV T >

A(D (2
I T <

n
S
2
2.
/‘\
P

this process
"feeds forward"
—> W (x) into all further
layers

The input layer can
also be called a™ or
activation layer 1




# NN leam'ww] e owwn €eatures

In logistic regression
these are the features
that contribute to output

With neural networks
layers are added

oue that serve as inputs
wmove

to the next layer
lowjer

Its like NN are
learning its own features
layer by layer until
the output

Note: we can choose different architectures
with a different number of layers and nodes

o)




Newrol NUWO : Examples and Tntuitions

NN allow us 1o moded tomplex raahionships
Mok canndt oe easily modeled os Luear combvinahius

Two Complex, Ioaltd functions are
© %0R - exclusive ORL

@ YNIR- e wvevse ofF XORC

WA 18 XOR (excwuave or)?

L XOR vemrmnsg true (M IR
' * I X1 OR X2 are f(ug ool O
Ly wnot if L o]

¥ ¥ Yi AND X2 ave true, ol
T \ \ o

5 note Me nvevse

Whak 1S XNOR? >

T *NOR. vemrng true IEAK
0 € X) AND X2 are Trug o[ o |

oc 1€ X AND %z are false ' | 2| O

(9] ) o

¥
\ \ l
Twaqing U

»w../-/

thu\hﬁ W l )L : R XNOR E’Q ‘\; o %
dvavng & / xon - j-w\"““
detiion bomdué_ .'



Newrol NUWO : Examples and Tnfwifions

NN's allow us to model complex relationships
that cannot be easily modeled as linear combinations

Imagine how difficult it would be for a linear function to
represent XOR (exclusive OR) or XNOR (inverse of XOR)

a X7 Q-
:l\ \ KOR $1/[\
‘ K
t e | 0,
-4 3 ANOR
—— 7 >
'L_:I_)' ¥y ¥
What is XOR (exclusive or)?
X | %
* XOR. etturng ; ;‘ ;
T \Fxi OR X2 are T(We ——5
but not i€ [5) )
"7 e‘r i)(. Y1 AND X2 avg trug VY o

note the inverse
What is XNOR?

Y2 XNOR returns ARy
O
T o € X1 AND ¥z ave f(ue¢ ——1— -
J or & % AND xz are false "o [ | o
_))(l \ \



Q: How can we bvald XNOR?

. @ ‘@ﬁ;ﬁi@ [or ]| [noR]

Q: Wow oo you build AND7?

v e (4.0) & .0l
@\ Q: Lhat parameters (6) woud you need
® —0O Yo weate ¢ AND function?
®
coudext: : \ ch |
T our Sguuoid GW\,/ \:rw\g 1 Loaq
positive (4.6) 6 44 and -
negative (-4.4) s 0.0l - K o9 = ¢
e 4.
()amMW% : =20 4 , F
Gang e vitd 20 20,420 we created
0 .\30 TrTm Tlable( s . s 2‘“” +
Y | Yz [nelk 1
+20
O - ke
O 07w ele e b
O 0|\ 0
\
= =20(0) 4 20%, +20x; \ 3 1 ¥

10 DO UST

o Anp

d ok
O NoR

AND bhiere!
Ive wade an
AND wievel




returne true

% i True  of X3 6 Trug

0 Teutn Table
-0 4| %y
+20
O y O - e ool o
o \ O
9] )
= —100) + 20x¢ + 0%z Vo
m turns true
W A e false
% Trutm Table
20~ 0o - he(0) * \I
(o}
= 100 —20% \ o

)
O
O

/zO/

refurng true

% ¢ fag oR %z ¢ falee

O - he®®)

100 - 20x,

- %z

Trutnw Table
LERAR
o | o

| (7]

19 )

| \ o




XNOR, made of

O AND: X and ¥z

@ NOR: NTT Xi aud %z
@ R: Y or ¥z

6"’=[|0,—zo.-zoj %= [-10,20,20]
XNOR, Fredn
YNo
I Uere |

- he(®

"Buna'\ng " WNOR. WA AND, OR and (INOT

wor | = (W ¥2) (("‘ X2))

\—/\/_Q




NN's can output to many nodes
to represent multiple classes

SINGLE e, MULTIPLE
CLASS CLASSES

WHERE:

]

[§) e
©

[e] class
o

o]
% clagg =>

Multiple classes can be

—o =
re.prese.nted by one lags >
dimensional vectors | o
where all values are 0
except for a single 1 value o
to represent the class :] class )

L‘é clesg =)

=
4

fs
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Neural Network Cost Function

Just like linear & logistic regression, we need a cost function,
the derivative of which will allow us to fit parameters
that will minimize cost

Terminology
O = O

O% o L : total no. of layers in network
0 Sy :no. of units in layer L
. R ¥ :no. of output units
Bm ect? e(;)
0_0_0__
o binary where K=1 ‘5%8%870

classification <

can be multi class where K >= 3 o§ %@%3

The NN cost function is a generalized version of
the logistic regression cost function adjusted for multiple
output nodes and theta dimensions of a matrix

cost function = cost of predictions + regularization

Logistic regression cost function

n

3(9)-’ __lm [gl \fm |03[/19 (X(i)) +(1- y("))lﬁ(l-hetx(i)))] + ;—w\ Z| 62
iz N

with NN's there are K output nodes regularization now
so we have to sum over every K output accounts for layers
and multi dimensions
Neural network cost function of theta matrix

3()= M[ 2z lcﬁhe(x( D+ (1-y, '))ltﬁ(l (<™ ]



Introducing backpropagation and why

Through the feed forward mechanism our NN
creates an output prediction layer

wesy prediching
I aveut™ 100% met.,
o % o %O %O the cost function

is like a judge

B(-) 9(17 e(;) e
L
We have a cost function to evaluate our predictions. u@
3

Backpropagation: we calculate partial derivatives so we can nudge our
theta (parameters/weights) by tiny amounts to minimize our cost “J(0)"

partial derivative update

Q: how do we find the

\ v v partial derivatives?
O% O ¢ g Q: with some heavy math, we find
0O that the partial derivative is the
N activation values multiplied by
& g0 g

"delta” or the "error” term

Q
o
L%
partial \_/\_/\/\/

derivatives
fixes the
?: (t)f partial _  activations ¥  errorterm of
et derivative of layer next layer
partial 0IB) _ O e
derivative A~ - a
for a single ae _
trainin where % is "delta" or the “error”
g a is the activation values
example

n is the layer

*we dont create the proof of this partial derivative in the lectures



Backpropation Algorithm

Through the feed forward mechanism our NN
creates an output prediction layer

W
GM'Q'/oYQX“d'
cEeEoES %

B(‘) 7 e( D

This output can be directly compared to
the actual label values from the training set.
The output layer error terms are straightforward

RO
\4
O—_—0_O< O ) W W
O%O O O ““:2:."50 % =Q - v
O~ 0o~ 0

wherg L 16 the

& o laodd
\ node g \‘::ngﬂ output layer

avror of Arami
OW-PMI OW - dﬂmﬂq
\ay oy \anex y valugs

Q: How can we use the output layer error term
("delta”) to propagate back error terms to the ]

other layers? LC“ /

%]

o) O = O
(B How wmuch of the error dp we O§O§O§O
backprop 10 each node? O =0 o~—o




Calculating delta for layers

output layer delta = output layer - y labels

8(\0 = O y

hidden layer delta is a function of 8, delta of the next
layer and derivative of sigmoid(z) and values

%(M : (e(n))T B(V\“) % j/(%(n)>

where g'(2*) = 2 % (1-d")

fully expanded:

S0 (@) 5 k(a0 % (1-))

These delta values are used in partial derivative to
determine changes in theta “parameters”

3J(6) () ¢ (n+1)
gl RSN - ;
%X;‘VSIP e =7 d Gi.j(m - & %i

5@

For our training set, the partial derivatives are averaged
where m is the total number of training examples t

(n+1)

" b
o ;E‘péee R 33() 'LZ ({)(n)%;(t)(ml)

* note: for simplicity we leave out the regularization ter!



Forward propagation calculates
activation nodes and

the output layer
the output layer

calculates the delta

O error term and
O % %O O backpropagate
error terms for

every layer
(0 ) @ ) (;) () (q
a” 6§ B

%(“5_ (4)
-t <@@P
@ (VT ¢y r=
7= (6"%)'% 9'(z ) <_@)
3(2)= (Om)TS“) ¥ 3/(%&)) e & P

2
tefa : 4 T N

WSed 10 deltn Aot SW]W\ oid
compute, o next  produck  evivative
next layey  \ayer = o™, * U-a)

0

Tnput \ayer evror i nef calculated error terms are used

2O 0@ 9@ o B@ o\m to calculate the

partial derivatives

P " Mo
33(6) D ()
3P = 48
37(6)

notation

* this notation is for one training example.
The actual training set will average over all
training examples



“If this is difficult,
you are not alone”

"I've actually used back propagation
pretty successfully for many years
and even today | still don’t, sometimes,
feel like | have a very good sense
of just what it's doing or sort of intuition
about what back propagation is doing"

- Andrew Ng






