Machine Learning Cartoons

Notes from Andrew Ng Coursera Stanford Machine Learning course

Illustrated by
Patrick Tran

Q : What is machine learning?

OLDER INFORMAL DEFINITION

The field of study that gives computers the ability to learn without being explicitly programmed
 - Arthur Samuel

Example:
Computer explicitly programmed to recognize a bear

Q: What is machine learning?

NEWER MORE MODERN DEFINITION

> A computer program is said to learn from experience E with respect to some class of tasks T and performance P IF

its performance at tasks T as measure by P improves with experience E

- Tom Mitchell

Example:
Computer program learning

In plain English:
More experience leads to higher performance at tasks

Example:

Computer Program playing checkers

E (experience): playing many games of checkers (or data of games) T (tasks) : task of playing checkers
p (performance): probability of winning

Example:

Computer Program driving vehicles

E (experience): driving many roads (real and simulated)
T (tasks) : task of driving safely from A to B p (performance): number of accidents

This course covers supervised and unsupervised learning

Supervised learning

We are given data with inputs and correct outputs. For example:

> housing data (inputs) \& house prices (outputs)

This data is used to create a statistical model (or just "model") used to predict new data

(1) train (inputs $\begin{gathered}\text { output })\end{gathered} \Rightarrow$ model
(2) model (housing data) \Rightarrow predicted house price

Say we wanted to predict the price for size $=8000$, bedrooms $=6$

two main flavors \wp of

supervised learning

linear

regression

predict results in a continuous space

Example 1
given: house data
predicts: house price

Example 2
given: photo of a person predicts: age of person

Age:43.287

classification

predicts results in a discrete space

Example 1
given: email data
predicts: spam or not spam

Example 2
given: photo of tumor predicts: malignant or benign

In an episode of HBO's Silicon Valley, the characters create an app called "Not Hot Dog" that detects whether an image is or isnt a hotdog.

The software engineers behind the show also created this app in real life using a total of 150,000 images to train their model to identify all types of hot dogs

This is a great example of logistic regression! Inputs are image pixels Output are the two discrete classes:

1. Hot dog
2. Not hot dog

two main flavors of

Unsupervised Learning

clustering

"find clusters!"

Given data, we use algorithms that find groupings or "clusters" to the data

not clustering

((()

This computer can listen to sounds and identify individual voices and music from a mesh of sounds

Supervised Learning

In supervised learning, our goal is to learn a function given a set of data
$h(x) \rightarrow y$

Hypothesis function (h) given input (x) predicts output (y)

from slides

training set
\& feature set \& training data \& training dataset \& feature set \& feature data \& features

what is "training set"?
data can be used for training our model...
ies data we decide to use for training is "training data" eve this set of data, our "dataset" can be referred to as our "training set"
each individual data attribute of the data can be referred to as a "feature" (number of bedrooms and sq. feet are features of the data)
so sometimes the training dataset is also the feature dataset, feature data or simply our "features"

Our data is our training set

Q: What makes up our data?

A: In supervised learning, our data has:

1. inputs (our "features")
2. outputs (our" labels")

For our housing example

There could be as many variables/ features that your budget and computing power allows!

$$
\left(x^{(i)}, y^{(i)}\right)
$$

This pair represents a single training example where the " i " represents the index
$m=$ number of training examples

These outputs of price are in a continuous space so you can tell this data is fit for linear regression.

NOTE: all inputs can be converted to
numeric, even images!
Classification (logistic regression) would require "classes" as output ie. (can afford / cannot afford)

HYPOTHSIS FUNCTION (h)

Q: what does the hypothesis function and look like?
A: All data inputs are eventually converted to numbers and h is a function of these numbers.

$$
h(x) \rightarrow y
$$

from slides

$$
h \theta=\underset{\uparrow}{\theta_{0}}+\underset{\uparrow}{\theta_{1} x}
$$

h functions have a bias value $\left(\theta_{0}\right)$ we want to solve for $\theta_{0} \& \theta_{1}$ so that $h(x)$ "fits" well with our training set

\$8. remember $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ from high school?
Remember, our data can have one, two, three or even hundreds or thousands of inputs!

$$
\begin{aligned}
& 2 \Rightarrow h \theta=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2} \\
& 3 \Rightarrow h \theta=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3} \\
& \vdots \\
& 100 \Rightarrow h \theta=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3}+\theta_{4} x_{4}+\theta_{5} x_{5} \\
& \uparrow \\
& \text { this many dimensions becomes hard to graph } \\
& \text { so this course usually visualizes } 2 \text { or } 3 \text { features }
\end{aligned}
$$

Note: hypothesis functions dont need to be simple functions
Depending on our domain knowledge about the data and the problem, we can create complex hypothesis functions

Example: two inputs with a special relationship
$h_{\theta}=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{1} x_{2}+\theta_{3} x_{2}$

Example: two inputs and higher order relationships
$h \theta=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x^{2}+\theta_{3} x^{3}$
"whichever function we use will depend on our knowledge about the data"

DATA 1
DATAZ

PROTIP: we can try different functions to see which one fits the best

Q: How do we evaluate our hypothesis function?
Q: First, why should we evaluate h?
A: We are using h for predictions and we should know how good or bad those predictions are?

$\theta_{0}=0 \quad \theta_{1}=1$
$(x)=0+1(x)$
0 。

A: We evaluate a hypothesis function with a "cost function". Remember, in supervised learning our data includes the correct outputs we can use hypothesis funciton outputs. There are different cost functions but the most common one is "Average Squared Difference"*

Note: this function amplifies larger errors since an error of 1 is $1^{\wedge} 2=1$ while a diff of 5 is $5^{\wedge} 2=25$!

Gradient Descent

Q: what is gradient descent (GD)?
A: GD is an algorithm that allows us to find the θ (theta) values that lead to

The cost function of linear regression \rightarrow could look like this

Note: lInear regression will always be convex and doesnt have local optima like this:

Let's use the derivative
Q: How?
A: The derivative of the cost function informs us of the slope of the tangent line. with this we know which direction to "descend". The "learning rate" determines the step size.

red: tangent line green: learning rate

minimum cost

Gradient Descent Algorithm

(one input example)

This is the condensed version with two thetas: one input theta and one bias theta
repeat
 \}

```
\ perform
    simulavecosly for allj
```

Note: technically when there are more parameters we are using the partial derivative

This is the expanded partial derivative from calculus

$$
\frac{\partial}{\partial \theta} J(\theta)=\frac{1}{m} \sum_{i=1}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}
$$

\# Note: this a general version of the partial derivative

The final version of the algo has this expanded partial derivative and since $x^{(0)}$ is always 1 , we often see it disappear in the formula

Gradient Descent Algorithm - one input

 repeat until convergence $\{$$$
\begin{aligned}
& \theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h \theta\left(x^{(i)}\right)-y^{(i)}\right) \\
& \} \quad \theta_{1}:=\theta_{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h \theta\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}
\end{aligned}
$$

week 2
WEEK2 WEEK2 WEH 2 WEEK2 WEEK2 WE 2 wres 2 wer 2 W K2 WHEK2 WEEK2 EEK2WEEK2WEEK? EHR2WER2WEx WER2 WELK2 WE 2 Whine WHyE2 Wi K2 WEER2 WEEK2 W

Multiple variables

Our data may contain

(A) single feature or
here: size

X	Y size
price	

single feature

here: size, \#of bedrooms, \#floors, age in years

multiple input features
size?

Notation
n = number of features
$X^{(i)}=$ features of ith training example
$X_{j}^{(i)}=$ value of feature j in ith training example

Hypothesis Function Multi-variate + Vectorized

Single feature
hypormesis function

$$
h_{0}(x)=\theta_{0}+\theta_{1} x
$$

Multiple Variable hypothesis function

$$
\begin{aligned}
h_{\theta}(x)= & \theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3}+\theta_{4} x_{4} \\
& \text { or generally } \\
h_{\theta}(x) & =\theta_{0}+\theta_{1} x_{1} \ldots \theta_{n} x_{n}
\end{aligned}
$$

Note: we have more θ variables than X because of the θ_{0} bias value

In order to create a vectorized representation of $h \theta(x)$ we can assume an x_{0} value (which is always 1) why is $\mathrm{Xo}_{\mathrm{o}}=1 ?$

Now our vectors both have length $n+1$

$$
\overbrace{1}^{\theta_{0}}, 0\left[\begin{array}{l}
\square \\
A
\end{array}\right.
$$

Ko is just a placeholder and 1 multiplied by any value is that same value

$$
\theta=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right]
$$

Multiplying these two vectors $h \theta(x)=\theta_{0} x_{0}+\theta x x$ can be represented as

Multiple feature hypothesis function

$$
h_{\theta}(x)=\theta^{\top} x
$$

In order to multiply two column vectors we need to transpose a vector

Transpose

$$
=\frac{\begin{array}{ll}
n \times 1 & 11 \\
& 11
\end{array} \underbrace{11}}{}
$$

for example

$$
\theta^{\top}=\left[\begin{array}{c}
\theta_{0}=\left[\begin{array}{lll}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right]^{\top}=\left[\begin{array}{llll}
\theta_{0} & \theta_{1} & \theta_{2} & \ldots
\end{array} \theta_{n}\right.
\end{array}\right]
$$

~MMGradient Descent Mr

Gradient Descent works similar going from one feature to multiple features

In essence,
for a single feature, perform a simultaneously update for θ in order to minimize cost.
Here, we only looked at θ_{0} and θ_{1}

Gradient Descent Algorithm - one input

$$
\theta_{1}:=\theta_{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}
$$

ξ

For multiple features, we are expanding to $\theta_{2^{\prime}}, \theta_{3^{\prime}}$ all the way up to θ n

Gradient Descent Algorithm-multi input
repeat until convergence $\{$
$\theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)$
$\theta_{1}:=\theta_{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}$
$\theta_{2}:=\theta_{2}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)} \quad$ simutaneously
\vdots
$\} \quad \theta_{n}:=\theta_{n}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h \theta\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}$
we can more generally represent $0, \ldots \mathrm{n}$ as j and create this concise function
more generally

$$
\theta_{j}:=\theta_{j}-\alpha_{m}^{1} \sum_{i=1}^{m}\left(h_{0}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

Feative scaling \qquad 1
Gradient Descent in practice I
What: make sure our features are on a similar scale Why: our goal is to make gradient descent run much faster as θ will "descend" quickly on smaller ranges and slowly on long ranges

LONGER RANGE

Say you have two features
$x_{1}=$ size (0-2000 feet)
$x_{2}=$ \#of bedrooms (1-5)

Feature scaling: divides input values by its range

The difference in scale creates a skewed cost curve graph

$$
x_{1}=\frac{\text { size }}{2000} \quad x_{2}=\# \frac{\text { of bedrooms }}{2}
$$

Which changes our cost curve to:

Two tricks are:

(1) feature scaling (2) mean normalization
(1) Feature scaling involves dividing our feature value by its range in an attempt to shrink its range to

$$
-1 \leq x \leq 1
$$

Note: every researcher has their own rule of thumb for this range. Ag suggests $-3<=x<=3$ and $-1 / 3<=x 1 / 3$ are also appropriate ranges
(2) Mean normalization is an additional option that replaces the feature value with feature value minus the mean so the new mean is roughly 0

How to Mean Normalize

In the above example if:
Average size $x_{1}=1000$
$\begin{gathered}\text { new (mean normalized) } \\ \text { feature value }\end{gathered}=\frac{\text { original feature value }- \text { mean }}{\text { range }}$
Average bedrooms $\mathrm{x}_{2}=2$

$$
x^{\prime} \leftarrow \frac{x-\mu}{s}
$$

$$
x_{1}=\frac{s 1 z e-1000}{2000}
$$

$$
x_{2}=\frac{4 \text { bedrooms }-2}{5}
$$

Video: Gradient Descent in Practice II

Debugging: How do you know gradient descent is working correctly?

Sometimes GD never converges Sometimes GD has a slow convergence

Method I: plot of the cost function $J(\theta)$ to its number of iterations

This means each iteration is making
our $J(\theta)$ cost larger. This could mean that in our convex curve...
$J(\theta)$

the learning rate alpha is causing our us to overshoot the minimum and actually increasing $\mathrm{J}(\theta)$
what if our graph
looked like this?

Learning Rate (a)
small α

- for sufficiently small $a, J(\theta)$ should decrease on every iteration
- BUT if Q is too small, gradient descent can be slow to converge

LARGE \propto

- if alpha is too large, $J(\theta)$ may not decrease on every iteration AND it may never converge

$$
\begin{aligned}
& \begin{array}{l}
\text { To choose an alpha try } \\
\text { different values: } \\
\ldots
\end{array} . \underbrace{0.003}_{\times 3}, \underbrace{0.01}_{\times 3}, \underbrace{0.03}_{\times 3}, 0.1, \underbrace{0.3}_{\times 3}, 1, \ldots
\end{aligned}
$$

FEATURES

Depending on your domain knowledge about the problem, sometimes defining new features may lead to a better model

Given two features
$x_{1}=$ frontage
$x_{2}=$ depth

Based on your real estate knowledge you know that "area" is a better predictor of price

Now we can use a better predicting single feature $\mathrm{h} \theta(\mathrm{x})$

POLYNOMIAL REGRESSION

we have been working with straight lines so far
$h \theta=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}$ л
no matter what theta is this will represent a straight fitting line through the data

Depending on the data we may
want to use a polynomial function

quadratic

| Note that feature scaling |
| :--- | :--- |
| becomes very important |
| now since these ranges |
| get exponentially large! |\quad| for scale, if: |
| :--- |
| size $=1-1,000$ |
| $s^{2}=1-1,000,000$ |
| size $^{3}=1-1,000,000,000$ |

Parting words:
" This may be bewildering! Which features do I use? which equation for the hypothesis function?
Later in the course we talk about algorithms that will choose features.
For now just know that you can choose different features and equations when your data calls for it

Lecture: Normal Equation
we have been using gradient descent so far, alternatively we can use the "normal equation" to solve for theta analytically.

Note: this lecture does not prove why
 the normal eq works, just how to use it and when to use it

HOW:

$$
\begin{aligned}
& \text { Normal Equation: }\left(x^{\top} x\right)^{-1} X^{\top} y \\
& \text { where } X=\text { inputs } \\
& Y=\text { outputs } \\
& m=\text { \# training examples } \\
& n=\# \text { features }
\end{aligned}
$$

$$
\text { Examples: } \underline{m=4}
$$

where $\left(X^{\top} X\right)^{-1}$ is the inverse of $X^{\top} X$

NORMAL EQUATION IN OCTAVE:

$$
\operatorname{pinv}\left(x^{\prime} * x\right) * x^{\prime} * y
$$

When should we use either?

	Gradient Descent	Normal Equation
Advantage	- Works well even when n is large	- No need to choose learning rate a - No need to iterate
Disadvantage	- Need to choose learning rate a - Needs many iterations	- Need to compute $\left(X^{\top} \mathrm{X}\right)^{-1}$ - Slow if n is very large

Normal Equation and Non-invertibility

Q : What if $\mathrm{X}^{\top} \mathrm{X}$ is non-invertible?

A: This should happen very rarely... But this may be possible because
(1) Redundant features

Example: you have one feature size (in feet) and another feature size (in meters)
Solution: delete one of these features
(2) Too many features
solution: delete features
week 3

Logistic Regression (Classification)

Classification (binary) Examples:

Email: spam, not spam
Online transaction, fraud?: Yes, no
Tumor: malignant, benign
Photo: hot dog, not hot dog

More concisely, O or 1
Given features X, ho $(x)=\{1,0\}$

Note: $\{1,0\}$ is binary and can be interpreted as $\{$ Yes, No\}, \{SPAM, NOT SPAM\}, \{X, O\} \{HOT DOG, NOT HOT DOG\}

Looking at a line through data

These are incorrectly identified
(1) as 0 (benign) with this best
fit line from linear regression

Here we use the best fit line from linear regression:
we may be tempted to interpret $h \theta(x)>0.5=1$ and $h \theta(x)<0.5=0$

benign malignant
we want to go from best fit to best split

Intuition:

This was our linear regression hypothesis function

$$
h_{\theta}(x)=\theta^{\top} x
$$

However for logistic regression $h \theta(x)$ should only return $\{0,1\}$ so we use a "sigmoid" function (g) otherwise known as a "logistic" function to take $\theta^{\top} x$ and fit it to an " S " curve

Logistic Regression Hypothesis Function

$$
\begin{array}{ll}
h_{\theta}(x)=g\left(\theta^{\top} x\right) & \text { one liner: } \\
\text { where } g(z)=\frac{1}{1+e^{-z}} & h_{\theta}(x)=\frac{1}{1+e^{-\theta^{\top} x}}
\end{array}
$$

In logistic regression we can think of $h \theta(x)$ as the probability that $\mathrm{y}=1$
so if $h \theta(x)=0.7$ then there is a probability of 70% that $y=1$

More about probability algebra
There is a 100% probability that $\mathrm{y}=1$ or $\mathrm{y}=0$
Therefore:

$$
\begin{aligned}
& P(D O)+P(D O \text { NOT })=1 \\
& P(\text { SPAM })+P(\text { NOT SPAM })=1 \\
& P(\mathbb{Q})+P(\text { NOT })=1 \\
& P(\text { NOT })=1-P(\mathbb{B})
\end{aligned}
$$

Note: once you know
$P(y=1)$ or $P(y=0)$ you
can derive the other through algebra!

Finding the boundary to best split the data

Q: How does $\mathrm{h} \theta(\mathrm{x})$ represent a decision boundary?

 Say we have...this hypothesis function and this data

Hypothesis Fr.
$h_{0}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}$
we need to solve for

Charted Data
x_{2}

θ (theta) that creates the best decision boundary
\# we learn how to solve for theta in a later lecture

Imagine we solved for these theta values:

$$
\theta=\left[\begin{array}{r}
-3 \\
1 \\
1
\end{array}\right] \text { so } \begin{aligned}
& \theta_{0}=-3 \\
& \theta_{1}=1 \\
& \theta_{2}=1
\end{aligned}
$$

Hypothesis Fr.
$h_{\theta}(x)=-3+1\left(x_{1}\right)+1\left(x_{2}\right)$
and predict $y=1$ if $h_{\theta}(x) \geq 0$

Charted Data
x_{2}

This is the decision boundary solved by finding theta

\$ssussss LOGISTIC REGRESSION

Can we reuse the linear regression cost function as the logistic regression cost function?

A: No
Q: Why not?
First lets look at our linear regression cost function:

$$
\text { Unear regression } J \theta=\frac{1}{m} \sum_{i=1}^{m} \underbrace{\frac{1}{2}\left(h_{\theta}\left(x^{(1)}\right)-y^{(i)}\right)^{2}}
$$

A: Since we have a high

$$
\left(h_{\theta}(x)=\frac{1}{1+e^{-\theta^{\top} x}}\right)
$$

IF we plugged it into this function our cost graph will be non-convex

NON CONVEX

This shape means many local optima; gradient descent will struggle to find the best option

CONVEX

Our goal is to get this pretty looking convex shape that gradient descent can help with

what should the shape of our cost function be?

if $y=0$
our cost graph for ha(x) could be ya of these shapes

(2) We know that our cost should go up if $\mathrm{y}=0$ and $h \theta(x)$ goes toward 1.
Our cost should go up as our prediction is more incorrect If $\mathrm{y}=0, \mathrm{~h} \theta(\mathrm{x})=0.5$ should
"cost" more than $\mathrm{h} \theta(\mathrm{x})=0.75$

(1) we know if $h \theta(x)$ and $y=0$
 we want the cost to
 be very very low or zero

We know that this cost curve SHAPE needs to be convex. so gradient descent can work its magic.

A: The \log and -log shapes are great shapes

This is the log function graph

This is the
negative log function graph

Why are these shapes great?
Why is this function great for modeling our cost curve?

- They are convex
- Can have zero cost
- We can model cost to approach infinity (helps to highly penalize wrong predictions)

TLDR $\rightarrow \quad \operatorname{cost}(h \theta(x), y)= \begin{cases}-\log (h \theta(x)) & \text { if } y=1 \\ -\log (1-h \theta(x)) & \text { if } y=0\end{cases}$

Intuition

if $\mathrm{y}=0$,
we want the correct prediction to "cost" less than incorrect predictions
so...
$h \theta(x)=1$ to "cost" less than $h \theta(x)=0$

A TALE OF TWO HYPOTHESIS PREDICTIONS

(2)
we set up
the cost function to make mistakes
 more costly
(3)

In notation
$h \theta(x)$

$$
\operatorname{cost}=0 \text { if } y=1 \nless h_{\theta}(x)=1
$$

but as $h_{\theta}(x) \rightarrow 0 \quad(h \theta(x)$ approaches zero)
cost $\rightarrow \infty$ (cost approaches infinity)

Visualizing the cost graph

Logistic Regression Cost Function

$$
\operatorname{cost}(h \theta(x), y)= \begin{cases}-\log (h \theta(x)) & \text { if } y=1 \\ -\log (1-h \theta(x)) & \text { if } y=0\end{cases}
$$

$$
\begin{aligned}
& \text { if } y=0 \\
& \text { cost }=-\log (1-h \theta(x))
\end{aligned}
$$

* Note that 1-h $\theta(x)$ flips the graph because $h \theta(x)$ will be between 0 and 1

T3 Converting our cost function to one line for $J(\theta)$
logistic Regression cost Function
$-\log \left(\ln _{\theta}(x) \quad\right.$ if $y=1$
$-\log \left(1-h_{\theta}(x)\right)$ if $y=0$

$$
\operatorname{cost}(h \theta(x), y)= \begin{cases}-\log (h \theta(x)) & \text { if } y=1 \\ -\log (1-h \theta(x)) & \text { if } y=0\end{cases}
$$

rearrange rearrange
(-) sign $(-) \operatorname{sign}$

We use this in J θ to measure average cost

$$
\begin{aligned}
& J \theta=\frac{1}{m} \sum_{i=1}^{m} \operatorname{cost}\left(h \theta\left(x^{(i)}\right), y^{(i)}\right) \\
& J \theta=\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log h \theta\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h \theta\left(x^{(i)}\right)\right)\right]
\end{aligned}
$$

Minimizing Cost $\mathrm{J}(\theta)$

Like always, given parameters theta (O) we want to minimize cost

$\min J(\theta)$
θ
\# we have a convex shape (function) and we want to find the min value

Welcome Back \Rightarrow 'Gradient Descent

Repeat \{

$$
\}
$$

$$
\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta) \leftarrow \text { until convergence }
$$

If the gradient step were a boat...

$\alpha=$ size of boat

the gradient boat leads us to the minimum cost!

Expanding $\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J \theta$ to something usable

Note: θ_{j} is parameterized by " j "

Gradient Descent formula

$$
\left.\theta_{j}:=\theta_{j}-\alpha \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)} \quad \begin{array}{c}
\text { Simulatenously } \\
\text { update all } \theta_{j}
\end{array}\right)
$$

Lecture: Advanced optimization

* gradient descent alternatives

1. conjugate descent
2. BFGS
3. L-BFGS

* the details of these three are outside the scope of this course

Advantages

- no need to manually pick a learning rate (a) (these algo's will choose a for you)
- often faster than gradient descent

Disadvantages
 - more complex

Recommendation:
Do not write these algos yourself
you can use these algo's without fully understanding the implementation

Example classes
email tagging: work, friends, family

* indices can start at $\mathrm{y}=0$ or $\mathrm{y}=1$

$$
y=1 \quad y=2 \quad y=3
$$

Instead of binary classification where we only have two classes (true or false, or or ...

In multi-class classification we can have many classes (\%, ©, \%)

We can solve this by creating multiple binary classification problems.

1. G and NOT Cg

We now have 3 classifiers and for predictions, we run all 3 classifiers and pick the highest score

Overfitting \& Underfitting

Your model may be improperly fit to the data

(1) Underfitting:

Your model doesn't
fit the training data well.
"High bias" because similar
to your model having strong preconception of the data

(2) Overfitting

Your model fits the training data too well.
It tries too hard to fit the data and fails to generalize to new data
"high variance" \uparrow

Imagine if the model essentially memorized all the data points of the training set

OVER fitting

Q: What is over fitting?
A: If we have too many features, the learned hypothesis may fit the training data so well that it fails to "generalize" to new example inputs

Note: Given this data
we can fit a linear,
quadratic, even a
higher order function

$x^{x+x \times}$

Addressing Overfitting

Its easy to plot data with only a couple features but we will encounter data with many features

X_{1}	size of house
X_{2}	color of house
X_{3}	\# of bedrooms
\vdots	
X_{100}	cardinal direction of 2nd bedrooms 3rd window

Options

(1) Reduce number of features
(a) manually remove features
(b) choose a feature selection algo

(2) Regularization

Q: What is regularization?

The idea behind regularization is that having smaller values for our θ parameters creates a
"simpler" hypothesis, smoother functions
and is less prone to overfitting
Suppose we want to penalize and make θ values really small. We do this in our cost function by adding an additional term that magnifies the affect to θ

$$
J(\theta)=\begin{gathered}
\text { NORMAL } \\
\text { FUST } \\
\text { FUNCTION }
\end{gathered}+\begin{gathered}
\text { REGULARIZATION } \\
\text { TERM }
\end{gathered}
$$

$$
J(\theta)=\frac{1}{2 m}\left[\sum_{i=1}^{m}\left(n_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\lambda \sum_{j=1}^{n} \theta_{j}^{2}\right]
$$

This lambda term (λ) is a parameter we can adjust

this reqularization term will reduce the θ values
LINEAR REGRESSION
W/REGULARIZATION:

LOGISTIC REGRESSION
W/REGULARIZATION:

$$
\text { LOGISTIC REGRESSION } \quad+\quad \text { REGULARIZATION }
$$

week 4
IV IV IV IV IV IV IV IV
IV IV IV IV IV IVIVIV
IV IV IV IV IV IV IV IV
IV IV IV IV IV IV IV IV

Neural Networks

Intuition

This week we learn about neural networks.
We already have linear regression and logistic regression, so why do we need another learning algorithm?

There are situations we want to learn complex nonlinear hypothesis.
Consider you have this data.

> we could add non-linear terms

$$
x_{1} x_{2}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+\cdots
$$

When you have only two features we can afford to add all these terms... but often you have many more than two features and this becomes computationally expensive so we need a better learning algorithm

How do we solve this?

If we used logistic regression, we would add non-linear terms that are complex enough to fit interesting datasets.
Quadratic such as $\times 1 * x 2 \times 1 * x 3$ etc...
Or cubic such as $\times 1^{*} \times 2 * x 3, x 1^{*} \times 2 \wedge 2$

However, that is a lot of features which leads to

- overfitting,
- computationally expensive

Complex non-linear hypothesis are hard to learn when n is large

The neurons that make up our brain have Dendrites - receivers of input Axons - broadcasters of output

Q: Where does the nonlinearity come from?
A: At each node, $\theta^{\top} \mathrm{X}$ is the linear combination of theta (weights) and x (inputs).

We call $\theta^{\top} X,{ }^{\prime} z^{\prime \prime}$
$\theta=\left[\begin{array}{l}\theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \theta_{3}\end{array}\right] \quad x=\left[\begin{array}{l}x_{0} \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \quad z=\left[\begin{array}{lll}\theta_{0} & \theta_{1} \theta_{2} \theta_{3}\end{array}\right] *\left[\begin{array}{l}x_{0} \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

> LINEAR
> COMBO

The difference is that we put z through an "activation function" which is a nonlinear function " 9 "

In this course, g will be the sigmoid function.
sigmoid function! $\overline{1+e^{-z}}$

SIGMOID

Here " g " is the same sigmoid function from our logistic regression lecture
*In fact, without the network, this should look similar to logistic regression

A neural network is a collection of these neuron calculations.

Input hidden hidden output

Terminology
The first layer is called the input layer
The last layer is the output layer
All layers in between
are "hidden" layers

Note: Theta is now stored in a matrix $\quad \therefore \because:$. In the single neuron example (like in logistic regression), output to a single node means theta is a 1D vector. In the network, each layer can output to $1+$ nodes for the next layer so theta is a matrix of paramters (or "weights")

lafers l layer2

Notation

$a i^{(j)}$
$\theta^{(j)} \quad \begin{aligned} & \text { matrix of weights } \\ & \text { going from layer } j\end{aligned}$ to layer $\mathrm{j}+\mathrm{I}$
X_{n} inputs from the data

Notation

This is a single theta value $\underbrace{\substack{\text { from } \\ \text { node }}}_{\substack{\text { to } \\ \text { to } \\ \text { node } \\ \text { layer }}}$

for the 3rd node of the next layer (2)

In matrix θ, each row will be the theta weights for a single neuron to multiply

$\chi_{0} \ddots_{\ddots^{\prime}} \theta_{01}(1)$

That these values determine what row in the theta matrix is used to calculate this neuron

Q: What are the dimensions of theta of a single layer?
A: If a network has

- k units in layer j and
- y units in layer j+1,
- then $\Theta(j)$ has dimensions (y * $\mathrm{k}+1$).
- Where 1 is added to k to adjust for the bias term

Example:
layer 1 has 3 units and layer 2 has 5 units
$\theta^{(1)}$ will have dimensions:

$$
(y * k+1)=(5 * 4)
$$

dimensions:

Model Representation 2

Q: How do we calculate the layers efficiently?
A: Computers are extremely fast at vectorized and matrix multiplication so we solved with vector math.

"Forward Propagation": Vectorized Implementation

Say we have input vector $x \quad$ or "activation layer 1"
Our first goal is to find activation layer 2.
Here we represent these vectors in
shorthand
$x=\left[\begin{array}{l}x_{0} \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \quad z^{(2)}=\left[\begin{array}{l}z_{1}^{(2)} \\ z_{2}^{(2)} \\ z_{3}^{(2)}\end{array}\right] \quad a^{(2)}=\left[\begin{array}{l}a_{1}^{(2)} \\ a_{2}^{(2)} \\ a_{3}^{(2)}\end{array}\right]$

Solution:
calculate the linear combination and take the sigmoid

$$
\begin{aligned}
& z^{(2)}=\theta^{(1)} x \\
& a^{(2)}=g\left(z^{(2)}\right)
\end{aligned}
$$

The input layer can also be called $\mathrm{a}^{(1)}$ or activation layer 1

this process "feeds forward" into all further layers
\# NN learning its own features

In logistic regression
these are the features
that contribute to output

With neural networks layers are added that serve as inputs to the next layer

Note: we can choose different architectures with a different number of layers and nodes

NN'S allow us to model complex relationships that cannot be easily modeled as linear combinations Two complex logical functions are
(1) XOR- exclusive OR
(2) XNOR - the inverse of XOR

What is XOR (exclusive OR)?

What is XNOR?

\times NOR returns true If x_{1} AND x_{2} are true or if $X_{1} A N D X_{2}$ are false

x_{1}	x_{2}	y
0	0	1
1	0	0
0	1	0
1	1	1

Imagine the
difficulty in
drawing a
decision boundary

NN's allow us to model complex relationships that cannot be easily modeled as linear combinations

Imagine how difficult it would be for a linear function to represent XOR (exclusive OR) or XNOR (inverse of XOR)

What is XOR (exclusive or)?

XOR returns true if $x_{1} O R x_{2}$ are true but not if x_{1} AND x_{2} are true

x_{1}	x_{2}	y
0	0	0
1	0	1
0	1	1
1	1	0

What is XNOR?
note the inverse

XNOR returns true if x_{1} AND x_{2} are true or if x_{1} AND x_{2} are false

x_{1}	x_{2}	y
0	0	1
1	0	0
0	1	0
1	1	1

Q: How can we build XNOR?

AND Q: how do you build AND?

negarue (-4.6) is . 01

Q : what parameters (θ) would you need to create the AND function?
context: In our sigmoid function positive $(+4, b)$ is $99{ }^{6}$ near 1 positive $(+4.6)$ is .99 and negative (-4.6) is 0.01

Say we used parameters: $-30,+20,+20$

Truth Table
we created this chart!

x_{1}	x_{2}	$h \theta(x)$
0	0	0
1	0	0
0	1	0
1	1	1

$$
=-30(1)+20 x_{1}+20 x_{2}
$$

OR
returns true
x_{1} is true or x_{2} is true
$0 \xrightarrow{0+20}$
0 $0 \rightarrow h_{\theta}(x)$

$$
=-10(1)+20 x_{1}+20 x_{2}
$$

Truth Table

x_{1}	x_{2}	y
0	0	0
1	0	1
0	1	1
1	1	1

NOT
returns true
if X_{1} is false
$0 \xrightarrow{+10} \mathrm{O} \rightarrow h_{\theta}(x)$

$$
=10(1)-20 \times 1
$$

Truth Table

x	y
0	1
1	0

NOR
returns true
x_{1} is false OR x_{2} is false

$=10(1)-20 x_{1}-20 x_{2}$
Truth Table

x_{1}	x_{2}	y
0	0	1
1	0	1
0	1	1
1	1	0

XNOR made of
(1) AND: x_{1} and x_{2}
(2) NOR: NDT x_{1} and x_{2}
(3) OR: x_{1} OR x_{2}

AND
$\theta^{(1)}=[-30,20,20]$

"Building" XNOR with AND, OR and NOT $X N O R=\left(x_{1} \triangle R \quad x_{2}\right) A N D\left(N O T\left(x_{1} \triangle x_{2}\right)\right)$

$$
\text { XNOR } \left.=\left(x_{1} \triangle R x_{2}\right) \triangle A N D\left(x_{1} \triangle A N D x_{2}\right)\right)
$$

NN's can output to many nodes
to represent multiple classes
SINGLE vs MULTIPLE
CLASS CLASSES

[1] positive
[0] negative
$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ class $1 \Rightarrow \sec$
Multiple classes can be represented by one dimensional vectors

$$
\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { class } 2 \Rightarrow
$$ where all values are 0 except for a single 1 value to represent the class

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { class3 } \quad \Rightarrow} \\
& {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { class } 4 \quad \Rightarrow}
\end{aligned}
$$

weex 5
week 5
week 5 weex 5 week5 Wel

Neural Network Cost Function

Just like linear \& logistic regression, we need a cost function, the derivative of which will allow us to fit parameters that will minimize cost

Terminology

L : total no. of layers in network
S_{1} : no. of units in layer L
k :no. of output units
classification
can be

binary where $K=1$

multi class where $K>=3$

The NN cost function is a generalized version of the logistic regression cost function adjusted for multiple output nodes and theta dimensions of a matrix

```
cost function = cost of predictions + regularization
```


Logistic regression cost function

$$
J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log h \theta\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h \theta\left(x^{(i)}\right)\right)\right]+\frac{\lambda}{2 m} \sum_{j=1}^{n} \theta_{j}^{2}
$$

with NN's there are K output nodes so we have to sum over every K output

Neural network cost function
regularization now accounts for layers and multi dimensions of theta matrix

$$
J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{k} y_{k}^{(i)} \log h \theta\left(x^{(i)}\right)_{k}+\left(1-y_{k}^{(i)}\right) \log \left(1-\left(h \theta\left(x^{(i)}\right)\right)_{k}\right)\right]
$$

$$
+\frac{\lambda}{2 m} \sum_{i=1}^{L-1} \sum_{i=1}^{S_{i}} \sum_{j=1}^{S_{i+1}}\left(\theta_{j i}^{(i)}\right)^{2}
$$

Introducing backpropagation and why

Through the feed forward mechanism our NN creates an output prediction layer

Backpropagation: we calculate partial derivatives so we can nudge our theta (parameters/weights) by tiny amounts to minimize our cost " $\mathrm{J}(\theta)$ "

$$
\begin{array}{ll}
\begin{array}{l}
\text { partial } \\
\text { derivative } \\
\text { for a single } \\
\text { training } \\
\text { example }
\end{array} & \frac{\partial J(\theta)}{\partial \theta^{(n)}}=a^{(n)} \delta(n+1) \\
\begin{array}{ll}
\text { where } \delta \text { is "delta" or the "error" } \\
& \begin{array}{l}
\text { a is the activation values } \\
n \text { is the layer }
\end{array}
\end{array}
\end{array}
$$

Backpropation Algorithm

Through the feed forward mechanism our NN creates an output prediction layer

This output can be directly compared to the actual label values from the training set.
The output layer error terms are straightforward

Q: How can we use the output layer error term ("delta") to propagate back error terms to the other layers?

Calculating delta for layers

output layer delta = output layer - y labels

$$
\delta^{(k)}=a^{(k)}-y
$$

hidden layer delta is a function of θ, delta of the next layer and derivative of $\operatorname{sigmoid}(z)$ and values

$$
\begin{aligned}
& \delta^{(n)}=\left(\theta^{(n)}\right)^{\top} \delta^{(n+1)} \cdot * g^{\prime}\left(z^{(n)}\right) \\
& \text { where } g^{\prime}\left(z^{(n)}\right)=a^{(n)} \cdot *\left(1-a^{(n)}\right)
\end{aligned}
$$

fully expanded:

$$
\delta^{(n)}=\left(\theta^{(n)}\right)^{\top} \delta^{(n+1)} \cdot *\left(a^{(n)} \cdot *\left(1-a^{(n)}\right)\right)
$$

These delta values are used in partial derivative to determine changes in theta "parameters"

$$
\begin{aligned}
\underset{\text { single }}{\text { example }} \rightarrow \frac{\partial J(\theta)}{\partial \theta_{i j}(n)} & =a_{j}^{(n)} \delta_{i}^{(n+1)} \\
& \left.=a_{a}^{n} *\left[a_{3}\right]^{(11}\right]^{(n+1)}
\end{aligned}
$$

For our training set, the partial derivatives are averaged where m is the total number of training examples t

$$
\underset{\text { multiple }}{\text { example }} \rightarrow \frac{\partial J(\theta)}{\partial \theta_{i, j}^{(n)}}=\frac{1}{m} \sum_{t=1}^{m} a_{j}^{(t)(n)} \delta_{i}^{(t)(n+1)}
$$

Forward propagation calculates
activation nodes and the output layer

the output layer calculates the delta error term and backpropagate error terms for every layer

Input layer error is not calculated
$a^{(1)} \theta^{(1)} a^{(2)} \theta^{(2)} a^{(3)} \theta^{(3)} a^{(4)}$
error terms are used to calculate the partial derivatives

$$
\begin{aligned}
& \frac{\partial J(\theta)}{\partial \theta_{i j}^{(3)}}=a_{j}^{(3)} \delta_{i}^{(4)} \\
& \frac{\partial J(\theta)}{\partial \theta_{i j}^{(2)}}=a_{j}^{(2)} \delta_{i}^{(3)}
\end{aligned}
$$

this multiplication creates
a matrix that has dimensions for the matrix $\theta^{(3)}$

$$
\frac{\partial J(\theta)}{\partial \theta_{i j}^{(1)}}=a_{j}^{(1)} \delta_{i}^{(2)}
$$

[^0] training examples

"If this is difficult, you are not alone"

"I've actually used back propagation pretty successfully for many years and even today I still don't, sometimes, feel like I have a very good sense of just what it's doing or sort of intuition about what back propagation is doing"

- Andrew Ng

[^0]: * this notation is for one training example.

 The actual training set will average over all

